Navigation




История Вселенной

2011-02-07, Естествознание , Иан Николсон

,

Статья История Вселенной перенесена на страницу сайта Глобальный Мир по адресу Статья История Вселенной. Перенос осуществлен в связи с прекращением действия сайта в скором будущем.

В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012 К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгновения; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.

В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой энергии»; пока плотность энергии фотонов оставалась достаточно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц

Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011 К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами — иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010 К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10 с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.

Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, анти нейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества — в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий (теории Великого объединения), в которых такой дисбаланс находит вполне естественное объяснение.

Через 3 мин после Большого взрыва температура Вселенной понизилась до 109 К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700 000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения — возникло то, что сейчас наблюдают как реликтовое фоновое излучение.

После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты — все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях — звездах, галактиках, скоплениях и сверхскоплениях, — когда Вселенная как целое разлеталась в разные стороны?

Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших галактических размеров — сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуации плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.

Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения. Но откуда же в таком случае возникли флуктуации плотности, ставшие позднее галактиками? Решение этого вопроса затрудняется тем, что мы не располагаем наблюдательными данными, относящимися к критическому моменту образования звездных систем. Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т. е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений.

Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы — «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) — 108 : 1, — М. Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.

Эта точка зрения не получила широкого признания, однако интересно отметить, что в 1979 г. Д. П. Вуди и П. Л. Ричарде из Калифорнийского университета опубликовали результаты наблюдений, как будто указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела: кривая фонового излучения выглядит «острее», чем ей следовало бы быть. Позднее в том же году М. Роуэн-Робинсон, Дж. Негропонте и Дж. Силк (Колледж королевы Марии, Лондон) указали, что «горб» на кривой микроволнового излучения, обнаруженный Вуди и Ричардсом, может быть объяснен излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует гипотезе М. Риса. Пока рано говорить, выдержит ли эта новая идея последующий анализ, но если она соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения и в настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.

Частная теория относительности
Принцип эквивалентности Эйнштейна
Следствия принципа эквивалентности
Искривленное пространство-время
История Вселенной

Николсон И. Тяготение, черные дыры и Вселенная: Пер. с англ./Под ред. и с предисл. Н. В. Мицкевича. — М.: Мир, 1983. — 240 с, ил.

Другие статьи на подобные темы:
Принцип эквивалентности Эйнштейна
Мистификация XX века перетащена в XXI
О книге Н.В. Гулиа «Удивительная физика»
ТО и психология Иосифа Гольдфаина
Первый комплект преобразований СТО


Теория происхождения культурных растений

2016-10-15, Естествознание, Светлана Аксенова,

Основоположник российской селекции Николай Иванович Вавилов родился в 1887 г. в Москве. С юных лет его интересовала окружающая природа. Ещё будучи студентом Московского сельскохозяйственного института, он занимался проблемой иммунологии растений. Впоследствии Н.И. Вавилов много путешествовал, собирая коллекции различных культурных растений и общаясь с видными учеными Англии, Франции, Германии. Неоднократно он ездил с научной целью в Азию — Иран, Бухару, Афганистан, бывал на Кавказе. На основе собранных коллекций семян и гербариев Н.И. Вавилов готовил серьезный обобщающий труд по селекции и генетике растений.

Подробно


Биоценоз и экосистема

2016-04-21, Естествознание, А.В. Ганжина,

На основе биотических взаимоотношений создаются сообщества растительных и животных организмов — биоценозы.

Подробно


Теория отражения

2016-04-07, Естествознание, Константин Платонов,

Любой живой организм беспрерывно взаимодействует с окружающей средой, в результате чего происходит его развитие.

Подробно


Структура периодической таблицы химических элементов

2016-03-13, Естествознание, Н. Ахметов,

Химию можно определить как науку, изучающую вещества и процессы их превращения, сопровождающиеся изменением состава и строения. В химическом процессе происходит перегруппировка атомов, разрыв химических связей в исходных веществах и образование химических связей в продуктах реакции. В результате химических реакций происходит превращение химической энергии в теплоту, свет и пр.

Подробно


Периодическая система химических элементов

2016-04-01, Естествознание, Светлана Аксенова,

Дмитрий Иванович Менделеев родился в г. Тобольске 8 февраля 1834 г. Окончив в 1855 г. Главный педагогический институт в Петербурге, он служил учителем гимназии в г. Одессе. В 1857 г. Менделеев вернулся в столицу, а с 1865 г. получил профессорскую должность в Петербургском университете.

Подробно


Точка зрения администрации сайта может не совпадать с мнением авторов.
2010-2017 © Анидор
Любое использование материалов сайта, полностью или частично, разрешается только с согласия правообладателя.
Если Вы обнаружили опечатку или неработающую ссылку, просьба сообщить администрации сайта.